Extraction of Facial Features from Speech

Aryan Karn
Motilal Nehru National Institute of Technology
Allahabad, India

aryankarnin@gmail.com

ABSTRACT

In this project, the main motivation was to infer about a person’s
look from the way they speak. We design and train a deep neural
network to perform this task using thousands of natural YouTube
videos of people speaking. During training, our model learns voice-
face correlations and then we used it for voice recognition to eval-
uate the efficiency of our model. The training is done in a self-
supervised manner, by utilizing the natural co-occurrence of faces
and speech in Internet videos, without the need to model attributes
explicitly.

1 INTRODUCTION

There is a strong correlation between speech of a person and his/her
appearance, part of which is a direct result of the mechanics of
speech production: age, gender (which affects the pitch of our
voice), the shape of the mouth, facial bone structure, thin or full
lips — all can affect the sound we generate. In addition, other voice-
appearance correlations stem from the way in which we talk: lan-
guage, accent, speed, pronunciations. In this project, our goal is
not to predict a recognizable image of the exact face, but rather
to capture dominant facial traits of the person that are correlated
with the input speech. We design a neural network model that
takes the complex spectrogram of a short speech segment as input
and predicts a feature vector representing the face. More specifi-
cally, face information is represented by a 4096-D feature that is
extracted from the penultimate layer (i.e., one layer prior to the
classification layer) of a pre-trained face recognition network. To
train our model, we use the AVSpeech dataset (Ephrat et al., 2018).
Our model is trained in a self-supervised manner, i.e., it does not
require additional information, e.g., human annotations.

2 SPEECHTOFACE MODEL

The large variability in facial expressions, head poses, occlusions,
and lighting conditions in natural face images makes the design
and training of a SpeechToFace model non-trivial. A very straight-
forward approach of regressing from input speech to image pixels
does not work because such a model has to learn to factor out many
irrelevant variations in the data and implicitly extract a meaning-
ful internal representation of faces — a challenging task by itself.
We used the same pipeline as the Speech2Face (Oh et al., 2019) as
shown in Figure 1. comprising of two main components: 1) a voice
encoder, which takes a complex spectrogram of speech as input,
and predicts a low-dimensional face feature that would correspond
to the associated face; and 2) a face decoder, which takes as input
the face feature and produces an image of the face in a canonical
form (frontal-facing and with neutral expression). We trained only
the SpeechToFace model that predicts the face feature and the face
decoder model (Cole et al., 2017) was not available open source, so

Millions of ~—————— Face Recognition 4096-D Face Featurs _

Internet videos X : Pre-trained & fixed
e ;ﬁ o = N
TR i
=] %3 E i s oy Voicn Encodr Face Decoder Recon. Face
s v U I
) | G 20 N N =
ol ey

Figure 1: Figure 1: SpeechToFace model and training
pipeline (Oh et al., 2019). The input to the network is a
complex spectrogram computed from the short audio seg-
ment of a person speaking. The output is a 4096-D face
feature that is then decoded into a canonical image of the
face using a pre-trained face decoder network (Cole et al,,
2017). The module we train is marked by the orange-tinted
box. We train the network to regress to the true face fea-
ture computed by feeding an image of the person (repre-
sentative frame from the video) into a face recognition net-
work (Parkhi et al,, 2015) and extracting the feature from
its penultimate layer. We trained the model on around 5000
speech—-face embedding pairs from the AVSpeech dataset
(Ephrat et al., 2018).

we decided to implement it as a future work. During training, the
face decoder will be fixed, and the voice encoder that predicts the
face feature is only trained. Moreover the complex spectrogram
input and the 4096-D VGG face features (Parkhi et al., 2015) (used
to compute loss function) are precomputed to speed up the training
process.

3 IMPLEMENTATION DETAILS

3.1 Preprocessing

We used the AVSpeech dataset (Ephrat et al., 2018) comprising of
thousands of video segments from YouTube. Other libraries and
tools that we used for pre-processing are described below :

e youtube-dl - download the videos from the csv files corre-
sponding to start and end times.

o ffmpeg - extract audio and frames separately from the video.

e librosa and tensorflow libraries - compute stft and power
law compression

o face recognition and keras vgg-facenet - find face bounding
boxes and compute 4096 dimensional face embedding vector.

We saved the audio spectrogram and the face embeddings as pickle
files to speed up the training process.

- B

9 =S
o

Figure 2: Figure 1: SpeechToFace Face retrieval examples.
We query a database of 600 face images by comparing our
SpeechToFace prediction of input audio to all VGG-Face face
features in the database. For each query, we show the top-
5 retrieved samples. First row (Perfect match i.e, top 1) :
Speech suggests that the person is Chinese and all our pre-
dicted faces are Chinese, however there is a case of gender
mismatch in one of the top 5 results. Second row (Perfect
match) - Most of the predicted persons match in ethnicity
and gender. Last row is an example where the true face was
not among the top results, this may be attributed to too
much beard (which model didn’t learn properly owing to
less such data), poor quality of the cropped images due to
which face features are not proper. However most of the
predicted faces have their eyes looking downwards which is
strikingly noticeable and may be related to the voice, though
it is little debatable.

3.2 Architecture

The speech encoder architecture is a convolutional neural network
that turns the spectrogram of a short input speech into a pseudo face
feature as shown in figure 4. The blocks of a convolution layer, ReLU,
and batch normalization alternate with maxpooling layers, which
pool along only the temporal dimension of the spectrograms, while
leaving the frequency information carried over. This is intended
to preserve more of the vocal characteristics, since they are better
contained in the frequency content, whereas linguistic information
usually spans longer time duration. At the end of these blocks, we
apply average pooling along the temporal dimension. This allows
us to efficiently aggregate information over time and makes the
model applicable to input speech of varying duration. The pooled
features are then fed into two fully-connected layers to produce a
4096-D face feature.

3.3 Data

We divided the entire dataset that we downloaded into 3 parts :
Training Data (that is 80entire data), Validation Data (10data), and
Test Data (10shown in figure 3. We had 6100 of entire data, thus
training, test and validation data are as follows :

e Training Data - 4880 videos
e Validation Data - 610 videos
e Test Data - 610 videos

Aryan Karn

3.4 Training

Our voice encoder is trained in a self-supervised manner, using
the natural co-occurrence of a speaker’s speech and facial images
in videos. To this end, we use the AVSpeech dataset, a largescale
“in-the-wild” audiovisual dataset of people speaking. A single frame
containing the speaker’ face is extracted from each video clip and
fed to the VGG-Face model (Parkhi et al., 2015) to extract the 4096-
D feature vector, vf. This serves as the supervision signal for our
voice encoder—the feature, vs, of our voice encoder is trained to
predict vf.

4 RESULTS

We test our model both qualitatively and quantitatively on the
AVSpeech dataset (Ephrat et al., 2018). Our goal is to gain insights
and to quantify how closely our SpeechToFace model predicts the
facial features compared to the true facial features.

5 LIMITATIONS AND CHALLENGES

The data preprocessing step for the task is very time consuming for
the AVSpeech Dataset (Ephrat et al., 2018) because of the download-
ing and computing audio spectrograms and the face features. We
preprocessed around 6000 videos (compared to 2 million by original
paper) and it took around 40- 50 hrs. We trained the model on GTX
1080 Ti, it took around 20 min for very epoch and we trained for
10 hrs. We couldn’t implement the distillation loss as it requires
large amount of GPU memory because the model was huge and
on top of that we require fc7 to fc8 layer VGG facenet weights
during training. We are very sure that increasing dataset to around
2 million, using multiple GPU’s, more training time and fine tuning
the hyper parameters can increase the accuracy multi-fold.

6 FUTURE WORK

We didn’t implement the Face Decoder Model, which takes the face
features predicted by SpeechToFace model as input and produces an
image of the face in a canonical form (frontal-facing and with neu-
tral expression). The Speech2Face paper (Oh et al., 2019) had used
by the pretrained model by (Cole et al., 2017), but the pretrained
model was not available open source. We tried to implement the
model but it required huge amount of data as the results were not
so satisfactory. As the main aim of the project was to implement
the Speech Model, we postpone this vision task as a future work.

7 REFERENCES

e Forrester Cole, David Belanger, Dilip Krishnan, Aaron Sarna,
Inbar Mosseri, and William T. Freeman. Synthesizing Nor-
malized Faces from Facial Identity Features. arXiv e-prints,
art. arXiv:1701.04851, Jan 2017.

e A. Ephrat, I. Mosseri, O. Lang, T. Dekel, KWilson, A. Has-
sidim, W. T. Freeman, and M. Rubinstein. Looking to listen at
the cocktail party: A speakerindependent audio-visual model
for speech separation. arXiv preprint arXiv:1804.03619, 2018.

e Tae-Hyun Oh, Tali Dekel, Changil Kim, Inbar Mosseri, William

T. Freeman, Michael Rubinstein, and Wojciech Matusik. Speech2Face:
Learning the Face Behind a Voice. arXiv eprints, art. arXiv:1905.09773,

May 2019.

	Abstract
	1 Introduction
	2 SpeechToFace Model
	3 Implementation Details
	3.1 Preprocessing
	3.2 Architecture
	3.3 Data
	3.4 Training

	4 Results
	5 Limitations and Challenges
	6 Future Work
	7 References

